

QUALIFICATION

The production of lithium-ion battery cells

is covered in this seminar. For this purpose, theory and practice are combined. The focus is on the construction and commisioning of a battery cell. The concept of the "Ostfalia Battery Cell Manufacture" is unique worldwide and allows deep insights into cell production and cell operation from basic design to post-mortem analysis. Each participant will build their own individual cell and executes all manufacturing and analysis steps independently.

Target groups

- Technical staff in battery production
- Engineers/ technicians from the automotive industry
- Production employees
 Groups will be divided homogeneously to achieve optimal results. 4 participants per group.

Advantages of the Ostfalia Battery Cell Manufacture

- Academic environment with comprehensive expertise
- The seminar contents may be arranged flexibly
- Know-how beyond cell production: Abuse tests, simu- lation and measurement of complete cells, modules to automotive measurements
- State-of-the-art laboratory equipment: e.g. nano-XCT, laser scanner microscope, light microscope, SEM with EDX, Raman spectroscopy, laboratory for rheology, particle analysis, impedance spectroscopy, 3-electrode measurements, optically accessible cells
- Longterm cooperation with Volkswagen in the qualification
- Event in the new laboratory building in the middle of Wolfsburg

Program schedule 2-day seminar

Seminar day 1

Refreshing the basics of lithium-ion batteries

- Interactive lecture

Structure of laboratory cells
- Lab work

Seminar day 2

Construction in the glove box, commissioning of the laboratory cells

- Lab work

Disassemble and analyze the laboratory cells

- Lab work and Analysis

Hands-on seminar

in theory and practice

Day 1 8.00 -12.00 o'clock 13.00 -17.00 o'clock

Day 2 8.00 -12.00 o´clock

Registration www.tww.de

Costs 2-day seminar: 1.390,- € / participant 4.990,- € / group of 4 from company

Seminar tax free according to

Venue

An-Institute of the Ostfalia University of Applied Sciences Faculty of Automotive Engineering, Wolfsburg

More infos at www.tww.de

Trainings- & Weiterbildungszentrum Wolfenbüttel e.V. Am Exer 9 • 38302 Wolfenbüttel • Fax 05331/939-78004 e-mail: info@tww.de • www.tww.de

Contact person

Prof. Dr.-Ing. habil. Robin Vanhaelst Tel. 05361.8922-21190 r.vanhaelst@ostfalia.de Andreas Brüling Tel. 05331.939-78050 a.brueling@ostfalia.de

QUALIFICATION

BATTERY CELL PRODUCTION

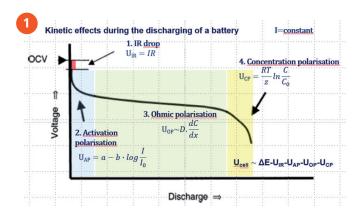
Seminar day 1 8:00-12:00 o'clock - interactive lecture

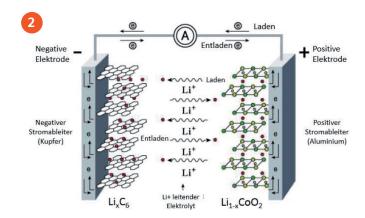
Basics of lithium-ion batteries

1. Elektrochemistry

- Repetition of the basic terms: Charging end voltage, endpoint voltage, nominal voltage, C-rate, SOH, SOC, DOD, SOF, etc.
- Real discharge curve of a battery

2. Structure, Function & Properties


- Structure of a lithium-ion battery
- Detailed description of functions and properties of the anode and cathode, separator and electrolyte
- Properties of cell chemistry on energy density, power density, safety and aging


3. Manufacture, Costs & Availability

- Description of the necessary production steps, projected onto a large-scale production plant
- Overview of manufacturing and material costs
- Analysis of the availability of cell materials

4. Design of the laboratory cells and preparation of laboratory

- Each participant will get their own cell chemistry (e.g. LFP, NMC, LMO, NCA)
- Calculation of the necessary active masses
- Determination of the anode composition for the cell structure
- Establishing a flow chart for the cell construction
- Safety instruction for the laboratory

Multi-layered protection on cell

- OSD (Overcharge Safety Device)
- 2 Vent
- Suse
- 4 SFL (Safety Functional Layer)
- 6 NSD (Nail Safety Device)*

* In case of 94Ah cell

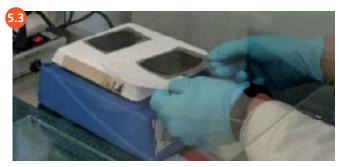
QUALIFICATION

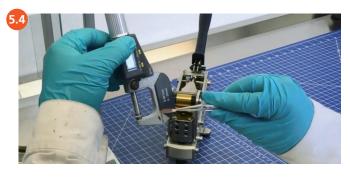
BATTERY CELL PRODUCTION

Seminar day 1 13:00-17:00 o'clock - Lab work

Structure of laboratory cells

5. Construction of Li-ion laboratory cells


- 5.1.a Mixing of the slurry for the anode according to your own recipe (for safety reasons the entire cathodes are provided)
 - 5.1.b Mixture according to own recipe
 - 5.1.c Explanation of mixing order and time based on physical laws
- 5.2. Coating the electrodes
 - Setting the layer thickness depending on the spec. capacity
- 5.3. Drying of the electrodes and determination of the layer thickness profile
- 5.4. Punching the electrodes
 - Layer thickness control
 - Visual inspection and mass determination
- 5.5. Compression of the electrode materials
 - Optical inspection using LSM or light microscopy
 - Layer thickness control
- 5.6. Transfer in vacuum dryer
 - Adjusting drying time, temperature and negative pressure
 - Process time (min. 12 hours)



Prof. Dr.-Ing. habil. Robin Vanhaelst Andreas Brüling

Tel. 05361.8922-21190 Tel. 05331.939-78050

r.vanhaelst@ostfalia.de a.brueling@ostfalia.de

QUALIFICATION

BATTERY CELL PRODUCTION

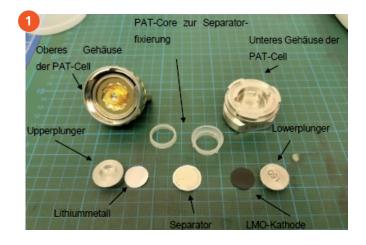
Seminar day 2 8:00-12:00 o'clock - Lab work

Construction in the glove box and commissioning of the laboratory cells

1. Dry runs of the cell assembly

 Dry runs of the cell assembly under glove boxlike conditions

2. Construction in the glove box


- Insertion of the cell materials into the glove box
- Assembly of the laboratory cells in the argon-glove box (each participant will build their own individual cell)

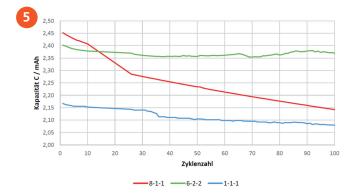
3. Commissioning of the laboratory cells

- Connecting the cell to the galvonastat or potentiastat
- Defining the cell's individual operating parameters
 - C-rate for the formation
 - Setting the cyclization parameters
- Conducting the formation and monitoring of the SEI formation


4. Conducting the cyclization

- Cyclization over 100 cycles with 1 C and further cycles from 2 C up to 10 C
- Calculation / observation of the SOH
- Measurement of the full cell potentials and the charging/ discharge current

QUALIFICATION

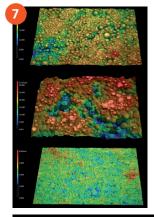

BATTERY CELL PRODUCTION

Seminar day 2 13:00 -17:00 o'clock - Lab work and Analysis

Disassemble and analyze the laboratory cells

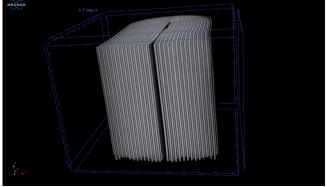
5. Analysis of the measurement results and aging

Determination SOH, Ri, Coulomb efficiency, etc. from cyclization


6. Disassembly of the laboratory cell and material analysis

- As part of the laboratory courses, the cells will be disassembled and analyzed
- Gravimetrical and optical methods will be used to understand and analyze the materials and cell structure




7. Application of optical metrology

- Laser Scanning Microscopy
- Light microscopy with subsequent digital image editing
- Ramann spectroscopy
- Nano-XCT measurements are shown

Contact person

Prof. Dr.-Ing. habil. Robin Vanhaelst Andreas Brüling